
Intuitionistic Logic

Tutorial – CADE-27

Giselle Reis – giselle@cmu.edu

Carnegie Mellon University, Qatar

August 23, 2019

1 What is logic?

The history of logic goes as far back as the Greek philosophers. In fact,
the mastery of logic was considered essential before studying other topics
(unfortunately this is no longer the case nowadays). But in those times there
were no formulas or connectives, it was all done using natural language.
Nevertheless, the main goal was the same: to arrive at conclusions starting
from a valid set of premises and using sound inferences.

In the very beginning (i.e. 500 B.C. to 19th century), the derivation of
conclusions was done via arguments between two parties: proponent and
opponent. They would agree on an initial set of premises and the proponent
would put forward a fact that necessarily follows from them. The opponent’s
role is to check if this is indeed the case, and provide a counter-example if it
is not. By iterating this process several times, the proponent and opponent
can agree on the overall conclusion. One can say that the premises and
agreed reasoning steps consists (loosely) of a proof of that conclusion.

Since then, a lot has changed. Natural language was abandoned and a
symbolic system, with fewer ambiguities, was developed. Logic began to be
used more and more for mathematical reasoning1. Systems for manipulating
the symbols and developing proofs were invented (proof systems). New
symbols or new interpretations of the classical symbols gave rise to new
logics, which served to model other kinds of reasoning (from philosophy to
computer science).

In this tutorial we will be concerned with one of these logics that deviated
from the “classical” interpretation of connectives and is very relevant for
computer science.

1This part of logic’s history is nicely described in a comic book called Logicomix

Tutorial Notes August 23, 2019

Intuitionistic Logic 2

1.1 Why another logic?

There were (and still are) many discussions on what constitutes “correct”
reasoning, which steps one can take without compromising an argument, and
what it means for something to be true. But one thing that people usually
accept fairly naturally is that, for every proposition A, either A holds or ¬A
holds. This is the so-called law of excluded middle. Given this principle, a
proof that it is not the case that ¬A (i.e., a proof of ¬¬A) can be considered
as evidence for A (if the disjunction is true and we know that one disjunct
does not hold, then the other one must be true). A proof that relies heavily
on the law of excluded middle is the following.

Theorem 1. There exist two irrational numbers x and y such that xy is a
rational number.

Proof. Take the number
√

2
√
2
. We do not know if this is a rational or

irrational number, but the law of excluded middle tells us it must be one or
the other.

Case 1:
√

2
√
2

is rational. Then choose x = y =
√

2 and the theorem holds.

Case 2:
√

2
√
2

is irrational. Then choose x =
√

2
√
2

and y =
√

2. Therefore
xy = 2 and the theorem also holds.

Is this a valid proof of the theorem or not? One might argue that it
is a proof, although not a very informative one. Some were not happy
about this situation, and they decided to come up with new rules for the
game. They were the constructivists (or intuitionists). They decided that,
in their logic, the truth of a judgment is solely determined by an evidence (or
proof) of that judgment. Not a negation of its negation, but the judgment.
It can be thought of as a proof-centered logic. It turns out that proofs
become really interesting and informative, and can even be interpreted as
algorithms (spoiler alert!). Mathematically, intuitionistic proofs represent
the construction of objects (hence the name)2. A real intuitionistic proof of
the theorem above would actually show how to obtain values for x and y
which satisfy the property.

1.2 Preliminaries

We will work with propositional logic (i.e. no quantifiers). In this section,
we define the syntax and some conventions used.

The operators of propositional logic are:

• conjunction (i.e. and): ∧
• disjunction (i.e. or): ∨

2Actually, there is a whole field named constructive mathematics trying to formalize
all mathematics in terms of intuitionistic (constructive) proofs.

Tutorial Notes August 23, 2019

Intuitionistic Logic 3

• implication: ⊃
• false: ⊥
• true: >

Note that we do not use negation (¬). Instead, a formula ¬A will be
written as A ⊃ ⊥. We use upper case letters for formula variables, i.e.,
placeholders which can be replaced by an arbitrary formula (like the A used
before). Many times we develop proofs using formula variables, since it
results in a more general proof. Lower case letters are reserved for proposi-
tions.

It is important to stress at this point that the notation conventions used
here are not set in stone and may be used differently in different sources.
After getting used with logic, it may be easy to deduce from the context
what should be a formula and what should be formula variables, but to
avoid confusion, we will try to follow these conventions closely.

Definition 1 (Formulas). The set of formulas is inductively defined as
follows:

• A propositional variable (or constant) p, q, r, s... is an (atomic) for-
mula.

• > and ⊥ are formulas.

• If A and B are formulas, then

– A ∧B is a formula.

– A ∨B is a formula.

– A ⊃ B is a formula.

To avoid the use of parenthesis, we adopt the following convention on
the precedence of logical operators (the ones listed first are evaluated first):
∧,∨,⊃. Therefore p ∧ q ∨ r is equivalent to (p ∧ q) ∨ r, for example. Also,
⊃ associates to the right: p ⊃ q ⊃ r is equivalent to p ⊃ (q ⊃ r).

Example 1. The following formula represents the fact that being human
implies being mortal:

human ⊃ mortal

The names human and mortal are propositional constants.
As another example, the following formula encodes that fact that if an

animal has feathers, a beak, and lays eggs, it is a bird.

feathers ∧ beak ∧ eggs ⊃ bird

Tutorial Notes August 23, 2019

Intuitionistic Logic 4

In order to build proofs we need to use a proof calculus. There are many
different ones, using the most various notations. In this tutorial we will see
two of them: natural deduction and sequent calculus. Both use the same
kind of building blocks: inference rules. They look like this:

. . .
name

The red boxes are placeholders for judgments called premises and the
blue box for a judgment called conclusion. A judgment is simply an assess-
ment about an object and it is written as object judgment (e.g. we can judge
if a string of digits, dots (.) and commas (,) is a valid number: 42 number
is a judgment that holds whereas 1.42, 5.2 number does not).

An inference rule is interpreted as: if all the premises hold, then the
conclusion holds. This means that truth is preserved from the top down.
Each inference rule has a name, which is noted on the right side of the
inference line.

Inference rules are presented with schema variables, represented by up-
percase letters (e.g., if the judgments involve formulas, then formula vari-
ables are used). These variables can be replaced by arbitrary objects and
no matter what you use for the variable, the rule will still be correct! For
example, suppose we are working with judgments of the type N nat, i.e., N
is a natural number. We can have an inference rule called +:

N nat M nat

N +M nat
+

When using this rule, it does not matter if we have N = 1 and M = 3
or N = 78918749 and M = 234 ∗ 200 + 789 ∗ 90, the inference is correct
regardless. Even if a crazy person decides to use “a” nat as one of the
premises, the rule can still be applied. One premise will be false, and can
never be proved, but that does not invalidate the fact that adding a natural
number to another natural number results in a natural number.

An inference rule can also have zero premises. This means that the
judgment in the conclusion holds independently of premises. This might be
because the judgment is trivial (e.g. x = x), it is an axiom, or because it is
one of the assumptions we made in the proof.

A proof is constructed by plugging in inference rules together. It can
be represented as a tree (upside-down considering how trees are drawn in
computer science; but in the right direction considering real trees) or a DAG
(directed acyclic graph) and it is considered complete (or closed) only when
all the leaves are inferences with no premises. Proofs with open leaves are
sometimes called derivations to disambiguate. The root of the tree is the
judgment being proved.

Tutorial Notes August 23, 2019

Intuitionistic Logic 5

2 Natural Deduction

David Hilbert was a German mathematician who published, in 1899, a very
influential book called Foundations of Geometry. The thing that was so
revolutionary about this book was the way theorems were proven. It followed
very closely an axiomatic approach, meaning that a set of geometry axioms
were assumed and the whole theory was developed by deriving new facts
from those axioms via modus ponens basically3. Hilbert believed this was the
right way to do mathematics, so in 1920 he proposed that all mathematics
be formalized using a set of axioms, which needed to be proved consistent
(i.e. ⊥ cannot be derived from them). All further mathematical knowledge
would follow from this set.

Shortly after that, it was clear that the task would not be so easy. Sev-
eral attempts were proposed, but mathematicians and philosophers alike
kept running into paradoxes. The foundation of mathematics was in crisis:
to have something so fundamental and powerful be inconsistent seemed like
a disaster. Many scientists were compelled to prove consistency of at least
some part of math, and this was the case for Gentzen (another German
mathematician and logician). In 1932 he set as a personal goal to show
consistency of logical deduction in arithmetic. Given a formal system of
logical deduction (i.e., a proof system), proving its consistency becomes a
purely mathematical problem, so that is what he did first. He thought that,
later on, arithmetic could be added (turns out that this was not so straight-
forward, and he ended up developing yet another system, but ultimately
Gentzen did prove consistency of arithmetic). The formal system of logi-
cal deduction developed was natural deduction, presented in a paper from
1934. In his words (translated to English): “First I wished to construct a
formalism that comes as close as possible to actual reasoning. Thus arose a
calculus of natural deduction.”

2.1 Inference rules

We have said that intuitionistic logic is all about proofs, but what does it
mean? It means that, in order to decide if a judgement of the type A true
holds (meaning that the formula A is true), we need a proof of it. Since A is
a logical formula (or proposition), the existence of a proof will be enforced
by the way the logical connectives are defined. We start with ∧.

Conjunction

A ∧B has a proof iff A has a proof and B has a proof4.

3Nowadays, such reasoning systems are known as Hilbert calculi.
4iff = if and only if = ⇔

Tutorial Notes August 23, 2019

Intuitionistic Logic 6

It may look a bit silly, but defining the connectives in terms of proofs, as
opposed to truth values, makes a big difference. It even results in a different
logic.

Notice that this statement has two directions. We will use both of them
to come up with valid inference rules. The backward direction tells us that
if A has a proof and B has a proof (these are the premises), we can conclude
that A∧B has a proof. This fact can be represented by be following inference
rule:

A true B true

A ∧B true
∧I

The rule is named ∧I (“and introduction”) because it is introducing the
connective ∧ between two propositions given the assumptions that there
are proofs for them. The connective is also “introduced” when we read the
definition from right to left.

The forward direction of the definition tells us that if A∧B has a proof,
we can conclude two things: (1) A has a proof; and (2) B has a proof. This
is represented thus by two inference rules:

A ∧B true

A true
∧E1

A ∧B true

B true
∧E2

These rules are named ∧Ei (“and elimination”) because they are elim-
inating a logical connective to reach a conclusion. The connective is also
eliminated when reading the definition from left to right.

Implication

The case of implication is more interesting. This is the definition of prov-
ability of a formula with implication:

A ⊃ B has a proof iff the existence of a proof of A implies B has
a proof.

Reading from right to left, we have that if the existence of a proof of
A implies a proof of B, then we can conclude A ⊃ B. To represent “the

existence of a proof of A”, we will use an inference without premises: A true.
It is part of our assumptions that A has a proof no matter what. This
assumption will use a label that will be the same as the one used in the
name of the rule. This is used to keep track of where assumptions are
coming from. Then, using the assumption zero or more times, we need to
get a proof of B somehow. This somehow part is represented by the three

Tutorial Notes August 23, 2019

Intuitionistic Logic 7

dots in the inference rule, which has to be filled in to complete the proof.
Finally, we can conclude A ⊃ B.

A true
u

...
B true

A ⊃ B true
⊃ Iu

Analogous to the ∧ case, this rule is called ⊃ Iu (“implication introduc-
tion”). It is important to note that the assumption A true can only be used
in this part of the proof, i.e., to prove B true, and not anywhere else.

Looking at the definition from left to right we have that if A ⊃ B has a
proof then we can conclude B, but only if A itself has a proof. In order to
get the conclusion, we actually have two conditions, that are translated as
two premises.

A ⊃ B true A true

B true
⊃ E

This rule is called, unsurprisingly, ⊃ E (“implication elimination”).

Truth

We look now at the case for >. This one is easy, > is true by definition and
this does not require a proof, so we have a rule without premises:

> true
>I

On the other hand, given > we cannot conclude anything interesting, so
there is no elimination rule for it.

Disjunction

The case for ∨ is a bit more complicated. The provability of a disjunctive
formulas is defined as:

A ∨B has a proof iff A has a proof or B has a proof.

The right to left reading translates straightforwardly to rules: if we have
a proof of A, we also have a proof of A ∨B; analogous for B.

A true

A ∨B true
∨I1

B true

A ∨B true
∨I2

Tutorial Notes August 23, 2019

Intuitionistic Logic 8

Now, what can we conclude from a proof of A∨B? Certainly not A (what
if the provable disjunct was B?), and symmetrically, not B. Is disjunction
a degenerate connective that has only introduction rules? No. There must
be something we can get from A ∨ B. Let’s call this something C. When
can we conclude a new (possibly completely unrelated) proposition C from
a proof of A∨B? Well, we know that it must be the case that either A or B
have a proof (reading the definition from left to right), but we do not know
exactly which one. If, under the assumption of A, we can conclude C, and
also under the assumption of B we conclude C, then we can definitely get
C from a proof of A∨B. Note that it is independent of which disjunct was
actually true, since we have both cases covered!

How is this translated to a rule? If we look at it carefully, we are con-
cluding C under three premises: (1) A ∨B has a proof; (2) assuming A we
get a proof of C; and (3) assuming B we also get a proof of C. Therefore:

A ∨B true

A true
u

...
C true

B true
v

...
C true

C true
∨Eu,v

This is a tricky one, so take your time to absorb it and read it again if
you need. If you are wondering if this rule is really necessary, a convincing
argument is that commutativity of disjunction ((A ∨ B) ⊃ (B ∨ A)) would
not be provable without it.

Falsehood

The last propositional connective is ⊥, which is simply falsehood, so we
should not be able to prove it (if you do, rest assured that there is something
wrong!). Therefore, there is no introduction rule. On the other hand, if we
happen to derive ⊥ in the middle of a proof, then we can conclude basically
anything:

⊥ true

C true
⊥E

The set of all these rules together make up the natural deduction calculus
for intuitionistic logic (Figure 1).

Notice that simply writing somethings above a line and another thing
below does not make an inference rule. They are inspired by the meaning
of the connectives, i.e. what it means for a proposition to be true. On the
next lecture we will see how to formally prove that they are “just enough”,
and that the resulting system is well-behaved.

Tutorial Notes August 23, 2019

Intuitionistic Logic 9

A true B true

A ∧B true
∧I

A ∧B true

A true
∧E1

A ∧B true

B true
∧E2

A true
u

...
B true

A ⊃ B true
⊃ Iu

A ⊃ B true A true

B true
⊃ E

A true

A ∨B true
∨I1

B true

A ∨B true
∨I2

A ∨B true

A true
u

...
C true

B true
v

...
C true

C true
∨Eu,v

⊥ true

C true
⊥E

> true
>I

Figure 1: Natural deduction system for intuitionistic logic (NJ)

2.2 Example

As an example of a proof in Natural Deduction, take the proof of A∧(A∧A ⊃
B) ⊃ B:

A ∧ (A ∧A ⊃ B) true
u

(A ∧A) ⊃ B true
∧E2

A true
w

A true
w

A ∧A true
∧I

B true
⊃ E

A ⊃ B true
⊃ Iw

A ∧ (A ∧A ⊃ B) true
u

A true
∧E1

B true
⊃ E

A ∧ (A ∧A ⊃ B) ⊃ B true
⊃ Iu

You may notice that this proof has a few redundant steps. This is not
by accident. It could be simplified, but it could also be more redundant, as
we will see in the next part.

Tutorial Notes August 23, 2019

Intuitionistic Logic 10

3 Curry-Howard Isomorphism

The Curry-Howard correspondence is not a thing that was suddenly discov-
ered, formalized and given a name. It is actually the organization of several
observations made trough many years by different people. Little by little
people were realizing that those observations were actually the same, and
then they decided to make it a thing. As it is known today, the Curry-
Howard correspondence establishes a relation between formulas and proofs
of those formulas in propositional intuitionistic logic and functions of a given
type in a functional programming language. More concretely, if we interpret
atomic propositions as basic types and logical connectives as type construc-
tors (in OCaml: *, ->, |), then the proof of a formula corresponds to a
program of the associated type.

First of all, let us see how formulas can be viewed as types.

The smallest piece of a formula is an atomic proposition, and the smallest
piece of a type is an atomic type, so it is only natural that we relate one
to the other. Since we usually work with proofs using formula variables
A,B,C, we will consider only type variables.

Conjunction translates as the product type: A ∧ B assumes proofs of
both A and B, analogously, ’a * ’b assumes two terms (or programs, or
functions, however you want to call them), one of type ’a and the other of
type ’b.

Implication is straightforwardly translated to the function type: a proof
of A ⊃ B goes from some given assumption A to B, the same way that a
function ’a -> ’b takes an argument of type ’a and computes a value of
type ’b.

Disjunction represents a choice, which is incorporated by the union type:
an option type is either Some or None, a list is either [] (empty) or x::L

(cons of at least one element), etc.
True is simply a fact that carries no information, so it is interpreted as

the unit type (the type with one inhabitant).
Finally, false corresponds to the empty type (or bottom type), a type

that has no values (and usually not available in programming languages).
When it exists, the empty type is used to signal functions that do not return
anything (e.g. raising exceptions or not terminating).

These relations are summarized in Table 1.

3.1 Proof terms

Now that we know that formulas can be types, we will redesign natural
deduction to annotate formulas with terms (i.e., expressions) of the corre-
sponding type. In particular we will use the new judgment:

5Not available in OCaml. Available in Scala as Nothing and in Rust as never.

Tutorial Notes August 23, 2019

Intuitionistic Logic 11

Logic world Programming world (OCaml)

formula variables (A, B, C, etc) type variables (’a, ’b, ’c, etc.)

conjunction (∧) product type (*)

implication (⊃) arrow type (->)

disjunction (∨) union type (|)

true (>) unit type (unit)

false (⊥) empty type5

Table 1: Formulas as types

M : A

to denote that the term M has type A. Therefore, the right side of the
colon contains the logical connectives and formulas we are familiar with.
The rules on these formulas will be the same ones as we know. The left side
of the colon contains a term (in a functional-like programming language) of
type A. We will now construct these terms.

A good thing to keep in mind is the duality between introduction and
elimination rules. Reading them top-down, introduction rules construct for-
mulas from smaller pieces and elimination rules extract the pieces from the
formulas. Analogously, introduction rules will construct terms and elimina-
tion rules will deconstruct them.

Conjunction

Conjunction is represented as the product type. So what term in program-
ming would have type ’a * ’b? A pair! So the introduction rule for con-
junction is also a rule that takes two terms M and N , of types A and B,
and puts them together in a pair structure.

M : A N : B

〈M,N〉 : A ∧B
∧I

There are two elimination rules for conjunction, each conclude one side
of the formula. If the term M is a pair of type A∧B, what is the operation
performed on M to get the first element of the pair? What about to get the
second? The pieces of a pair can be obtained by fst and snd operations,
therefore, the conclusions of the elimination rules are exactly the application
of these operations to term M .

M : A ∧B
fst M : A

∧E1
M : A ∧B
snd M : B

∧E2

Tutorial Notes August 23, 2019

Intuitionistic Logic 12

Implication

Implication is the function type, so which term in programming has the
function type? Well, a function! Since we do not care about function names,
we will represent them anonymously using λ abstractions6. The introduction
rule for implication takes an A and constructs B, which will be represented
by a term, or function, that takes an argument u of type A and passes it to
a term M of type B, i.e, λu.M .

u : A
...

M : B

λu : A. M : A ⊃ B
⊃ Iu

Implication elimination is quite intuitive. If you have a term of type
A ⊃ B (i.e., a function that takes something of type A as an argument and
returns something of type B), and you have a term of type A, what do you
do? Apply the function! So ⊃ E is simply function application.

M : A ⊃ B N : A

MN : B
⊃ E

Disjunction

Disjunction is the union type, which is represented in OCaml by the | used
in types. So if we have a term of type A, how do we construct a term of
type A ∨ B? Let’s look at an example. Suppose we have a datatype for
users in our system, and the users can be identified either by a name or by
a user ID:

type user = Name of string | UserID of int

Now, someone is registering and provided a user name: "aristotle".
How do we construct a user from it? We use the type constructor and apply
it to the string: Name("aristotle"). The operation of applying the type
constructor to build a union type is called injection. Given a term M of type
A, we will use inl to construct the union type A∨B and inr if M has type
B. The injections will be annotated with the type of the other component in
the union (although in programming languages this is completely omitted).

M : A

inlBM : A ∨B
∨I1

M : B

inrAM : A ∨B
∨I1

6You can think of a λx. abstraction as a fun x -> in OCaml.

Tutorial Notes August 23, 2019

Intuitionistic Logic 13

The deconstruction of a union type is done by casing on the type con-
structors (the injections) and extracting the term inside it, so that’s exactly
what we will do for the disjunction elimination rule. We start with a term
M of type A ∨ B. The other two assumptions in the rule gives us ways to
construct some term N or O (possibly different) of type C if we are given
terms u and v of types A and B, respectively. When casing on M and de-
constructing this union, we have a case for each possible term u or v that
produces some term N or O, both of type C. Notice the consistency of the
types in the case statement and the scope of the terms u and v.

M : A ∨B

u : A
...

N : C

v : B
...

O : C

case Mof inl u⇒ N | inr v ⇒ O : C
∨E

True

True is the unit type, which has only one inhabitant. We will represent it by
〈〉 (the fact that this is an empty pair is not a coincidence ;) in the rule >I.
There is no deconstruction of unit, the same way that there is no elimination
rule for >.

〈〉 : >
>I

False

False represents the empty type, which has no inhabitants. So if we con-
structed a term M of type ⊥, we can be sure that M is a nonsense program
and we can abort it. An aborted program may have any type C, which will
be used to annotate the command.

M : ⊥
abort M : C

⊥E

3.1.1 Example

All the rules from the previous section are summarized in Figure 2. Let’s see
them in action now by using the redundant proof of A ∧ (A ∧A ⊃ B) ⊃ B:

Tutorial Notes August 23, 2019

Intuitionistic Logic 14

M : A N : B

〈M,N〉 : A ∧B
∧I

M : A ∧B
fst M : A

∧E1
M : A ∧B
snd M : B

∧E2

u : A
...

M : B

λu : A. M : A ⊃ B
⊃ Iu

M : A ⊃ B N : A

MN : B
⊃ E

M : A

inlBM : A ∨B
∨I1

M : B

inrAM : A ∨B
∨I1

M : A ∨B

u : A
...

N : C

v : B
...

O : C

case Mof inl u⇒ N | inr v ⇒ O : C
∨E

M : ⊥
abort M : C

⊥E
〈〉 : >

>I

Figure 2: Natural deduction annotated with proof terms.

A ∧ (A ∧A ⊃ B) true
u

(A ∧A) ⊃ B true
∧E2

A true
w

A true
w

A ∧A true
∧I

B true
⊃ E

A ⊃ B true
⊃ Iw

A ∧ (A ∧A ⊃ B) true
u

A true
∧E1

B true
⊃ E

A ∧ (A ∧A ⊃ B) ⊃ B true
⊃ Iu

By using the rules we have just learned, we can transform it in a proof
annotated with terms (in red):

Tutorial Notes August 23, 2019

Intuitionistic Logic 15

u : A ∧ (A ∧A ⊃ B)

snd u : A ∧A ⊃ B
∧E2

w : A w : A

〈w,w〉 A ∧A
∧I

snd u 〈w,w〉 : B
⊃ E

λw.snd u 〈w,w〉 : A ⊃ B
⊃ Iw

u : A ∧ (A ∧A ⊃ B)

fst u : A
∧E1

(λw.snd u 〈w,w〉)fst u : B
⊃ E

λu.(λw.snd u 〈w,w〉)fst u : A ∧ (A ∧A ⊃ B) ⊃ B
⊃ Iu

The term λu.(λw.snd u 〈w,w〉)fst u on the conclusion is called the
proof term of this proof. It can be thought of as an abbreviation of how the
proof was constructed. Notice that if someone gives you only this term, you
are able to reconstruct exactly this proof. There are other proofs for this
same formula, but using this proof term you can only reconstruct this one!
That is what proofs as terms and formulas as types is all about :) A term,
or a program of a certain type corresponds to a proof of the formula, and
checking a proof then reduces to type checking a program.

If you are familiar with λ calculus or with proofs, you might have no-
ticed some redundancy either on that term or in the proof. On the term
level, there is a redex, i.e., a part that can be simplified, in this case, by
function application. On the proof level, there is an implication introduc-
tion constructing A ⊃ B followed immediately by its elimination, which is
redundant. These are exactly the same thing: the redex is caused by the
redundancy in the proof and vice versa. If we transform the proof, or the
term, we get the new annotated proof below:

u : A ∧ (A ∧A ⊃ B)

snd u : A ∧A ⊃ B
∧E2

u : A ∧ (A ∧A ⊃ B)

fst u : A
∧E1

u : A ∧ (A ∧A ⊃ B)

fst u : A
∧E1

〈fst u, fst u〉 : A ∧A
∧I

snd u 〈fst u, fst u〉 : B
⊃ E

λu.snd u 〈fst u, fst u〉 : A ∧ (A ∧A ⊃ B) ⊃ B
⊃ Iu

Now we have no more redexes and no more ways to simplify the proof.
How cool is that? Turns out that normalizing proofs and (typed) λ-terms
(or programs) is the same thing. That’s Curry-Howard.

3.2 What about a real world function?

The Curry-Howard isomorphism states that one can map programs of type
T to proofs of a proposition T . In particular, a program of type A ⊃ A is

Tutorial Notes August 23, 2019

Intuitionistic Logic 16

mapped to a function λx.x, which is the identity function. At this point one
might wonder if all functions of type A ⊃ A reduce to the identity function.
Well, certainly not! Take list sorting for instance. The type of a list sorting
function would be (int list) -> (int list) and this is definitely not
the identity function (unless you live in a parallel world where all lists are
sorted). What happened with the isomorphism there?

There are two things going on here. First of all, the isomorphism will
work if *no* assumption is made about the types. As soon as you decide
that your A is int list, you give some structure to the type and use that
structure in your program. Curry-Howard does not work this way. In fact,
it can be shown that, if no assumptions are made with respect to A (i.e., if
it is only a generic type), any function with type A ⊃ A can be reduced to
the identity function. Neat, no?

The second thing is that the isomorphism works only for a very small
notion of programs. Think about it. Propositional intuitionistic logic is
decidable. That means that, for every formula, we can either find a proof
for it or prove that there is no proof. On the programming side this results
on terminating programs, since you can decide if that program computes a
result of that type or not. So the programming language fragment we can
cover with our logic is not Turing complete. Actually, if we were to include
(general) recursion in the language, this would result in an inconsistent logic!
Suddenly programs can loop forever, and we can derive ⊥.

In any case, the Curry-Howard correspondence is important because it
organizes perspectives. And this was only the first step. After that, people
realized that many other logics can account for many other constructions
in programming languages, and that is an active research field. This kind
of mapping of formalisms is very useful to look at things from a different
perspective and to translate results from one side to another (e.g., typed
λ-calculus is normalizing, therefore, so are proofs in our logic). Another
result of this kind is the Church-Turing thesis, for example, which relates
recursive functions and Turing machines.

Tutorial Notes August 23, 2019

Intuitionistic Logic 17

4 Sequent Calculus

Gentzen’s motivation for coming up with natural deduction was to formalize
mathematical reasoning so that he could prove consistency of arithmetic. He
started by formalizing pure logical reasoning and showing that that system
was consistent, and later adding arithmetic. Unfortunately, showing consis-
tency in natural deduction turned out to be much harder than expected7.
So much so that he decided to invent another calculus in which reasoning
would be easier. Hence, sequent calculus was born.

In order to show that the proposed sequent calculus is sound and com-
plete with respect to natural deduction, we will get to it in three steps: first
we simply change the notation of natural deduction, then, using this new
notation, we show soundness and completeness w.r.t. sequent calculus using
some extra inference rules (namely: cut, identity, and weakening). Finally,
we could show that removing these extra rules results in an equally powerful
calculus8. This is depicted in Figure 3, where the symbols denote:

≡ The systems are equivalent, they only use different notations and
proofs can be mapped back and forth easily.

m The systems are sound and complete w.r.t. each other, and therefore
can be considered equivalent, or equally powerful (we prove this in this
section).

l The systems are shown to be equivalent by showing that the rules cut,
identity and weakening are admissible (i.e., all proofs using these rules
can be transformed into proofs that do not use these rules).

Natural Deduction
≡

ND in sequent notation
m

Sequent Calculus (with cut, identity and weakening)
l

Sequent Calculus

Figure 3: How everything is related.

7Proved in Dag Prawitz’s thesis: Natural Deduction: A proof-theoretical study (1965).
8For the sake of time, we will only state these theorems, without proving them.

Tutorial Notes August 23, 2019

Intuitionistic Logic 18

4.1 Natural Deduction in Sequent Notation

We start with the new notations. The sequent notation for natural deduction
will bring the hypotheses available for proving a formula to the same level
as the formula, in judgments of the shape:

Γ ` A

Where Γ denotes a (possibly empty) (multi-)set of formulas. This will
result in more linear and less two-dimensional proofs. The idea is simple:
whenever new assumptions are created by a rule application, we will add
them to the Γ context as opposed to writing them somewhere above the
proof. This will also make the scope clearer. The translation of natural
deduction rules to a sequent notation are shown in Figure 4. Note that we
have added hypothesis discharge, which is equivalent to using a hypothesis
to close a proof. The proofs in sequent notation will always finish with
applications of hyp.

An example of a proof in this calculus is:

A ⊃ B,A ∧ C ` A ⊃ B
hyp

A ⊃ B,A ∧ C ` A ∧ C
hyp

A ⊃ B,A ∧ C ` A
∧E1

A ⊃ B,A ∧ C ` B
⊃ E

A ⊃ B,A ∧ C ` A ∧ C
hyp

A ⊃ B,A ∧ C ` C
∧E2

A ⊃ B,A ∧ C ` B ∧ C
∧I

A ⊃ B ` (A ∧ C) ⊃ (B ∧ C)
⊃ I

` (A ⊃ B) ⊃ ((A ∧ C) ⊃ (B ∧ C))
⊃ I

We will also make use of the substitution principle, which says that
we can replace the use of an assumption (or hypothesis) by a derivation
of it if we have it. The subst rule can be added to our calculus without
compromising it because it is admissible.

Lemma 1 (Admissibility of subst). The subst rule is admissible.

This can be proved by replacing the application of subst into an appli-
cation of ⊃ I followed by ⊃ E.

Moreover, we will use the fact that adding more formulas to the context
does not affect provability:

Lemma 2 (Weakening Lemma). If Γ ` C then Γ, F ` C.

The proof of this lemma follow by structural induction on the proof tree,
and is quite straightforward.

Tutorial Notes August 23, 2019

Intuitionistic Logic 19

Natural Deduction ND in sequent notation

A true B true

A ∧B true
∧I

Γ ` A Γ ` B
Γ ` A ∧B

∧I

A ∧B true

A true
∧E1

A ∧B true

B true
∧E2

Γ ` A ∧B
Γ ` A

∧E1
Γ ` A ∧B

Γ ` B
∧E2

A true

A ∨B true
∨I1

B true

A ∨B true
∨I2

Γ ` A
Γ ` A ∨B

∨I1
Γ ` B

Γ ` A ∨B
∨I2

A ∨B true

A true
u

...
C true

B true
v

...
C true

C true
∨Eu,v

Γ ` A ∨B Γ, A ` C Γ, B ` C

Γ ` C
∨E

A true
u

...
B true

A ⊃ B true
⊃ Iu

Γ, A ` B

Γ ` A ⊃ B
⊃ I

A ⊃ B true A true

B true
⊃ E

Γ ` A ⊃ B Γ ` A
Γ ` B

⊃ E

> true
>I

Γ ` >
>I

⊥ true

C true
⊥E

Γ ` ⊥
Γ ` C

⊥E

Hypothesis discharging Γ, A ` A
hyp

if

A true
...

C true and
D

A true then

D
A true

...
C true

Γ, A ` C Γ ` A

Γ ` C
subst

Figure 4: Natural Deduction ≡ ND in sequent notation

Tutorial Notes August 23, 2019

Intuitionistic Logic 20

Γ→ A Γ→ B

Γ→ A ∧B
∧R

Γ, A,B → C

Γ, A ∧B → C
∧L

Γ→ A

Γ→ A ∨B
∨R1

Γ→ B

Γ→ A ∨B
∨R2

Γ, A→ C Γ, B → C

Γ, A ∨B → C
∨L

Γ, A→ B

Γ→ A ⊃ B
⊃ R

Γ, A ⊃ B → A Γ, B → C

Γ, A ⊃ B → C
⊃ L

Γ→ >
>R

Γ,⊥ → C
⊥L

Γ, p→ p
init

(for atomic p)

Figure 5: Sequent calculus for intuitionistic logic (LJ)

4.2 Sequent Calculus

The judgments of sequent calculus will be of the shape:

Γ→ A

Where Γ denotes a (possibly empty) (multi-)set of formulas. These are
called sequents. One should not be fooled by the similarity between this
and the last judgment. The main (important) difference is that Γ now holds
everything that is used in a proof, while the right side is reserved for the
formula to be verified. This means that we will have rules operating on the
left side of the sequent. The sequent calculus rules for intuitionistic logic are
shown on Figure 4.2. This calculus is sometimes called LJ. Note that rule
names have changed in order to reflect the fact that we are working either on
the left or right side of the arrow (as opposed to eliminating and introducing
connectives). A nice side effect of the change to sequent calculus is that now
proofs are completely linear, and proof-search is performed solely from the
bottom up.

As an example, here’s a proof of (A ⊃ B) ⊃ ((A ∧ C) ⊃ (B ∧ C)) in
sequent calculus:

Tutorial Notes August 23, 2019

Intuitionistic Logic 21

A ⊃ B,A,C → A
init

A ⊃ B,A ∧ C → A
∧L

A ∧ C,B → B
init

A ⊃ B,A ∧ C → B
⊃ L

A ⊃ B,A,C → C
init

A ⊃ B,A ∧ C → C
∧L

A ⊃ B,A ∧ C → B ∧ C
∧R

A ⊃ B → (A ∧ C) ⊃ (B ∧ C)
⊃ R

→ (A ⊃ B) ⊃ ((A ∧ C) ⊃ (B ∧ C))
⊃ R

In order to show soundness and completeness w.r.t. natural deduction,
it will be helpful to have the following rules in addition to the ones in
Figure 4.2:

Γ, A→ A
id

Γ→ A Γ, A→ C

Γ→ C
cut

Γ→ C

Γ, A→ C
weak

id is basically init generalized for arbitrary formulas, cut is a sort of
substitution lemma9 and weak is weakening (which we proved admissible
for ND in sequent notation). Using those rules will be harmless because
they are admissible. These proofs are beyond the scope of this tutorial due
to time constraints.

4.3 Soundness and Completeness

Right now we will worry ourselves with showing that the sequent calculus
(+ id, cut and weakening) is sound and complete with respect to natural
deduction. This will be proved by a structural induction on the proof tree,
transforming proofs in one formalism into the other. Using the sequent
notation for natural deduction will make the proof transformations quite
natural (for half the cases at least).

In what follows, we will denote the derivation
D

Γ ` A by the 1-dimensional
notation D :: Γ ` A. Similarly for →-sequents.

Theorem 2. (Soundness) If D :: Γ→ A then D′ :: Γ ` A.

Proof. The proof proceeds by showing how to transform a derivation of D
into D′. This is done inductively on the structure of D.

Base cases: The base cases are those where D is “empty”, i.e., Γ→ A
has no premises. The transformations are as follows:

9Fact: cut corresponds to the use of lemmas in mathematical proofs.

Tutorial Notes August 23, 2019

Intuitionistic Logic 22

Γ, A→ A
id

 Γ, A ` A
hyp

Γ→ >
>R

 Γ ` >
>I

Γ,⊥ → C
⊥L

Γ,⊥ ` ⊥
hyp

Γ,⊥ ` C
⊥E

Inductive cases: Each inductive case corresponds to how D might be
constructed, thus we case on the lowermost rule in the proof. Our inductive
hypotheses will state that the theorem holds for the structurally smaller
proofs that are above this lowermost rule of D. Let these proofs be called E
and F (because all rules have, at most, two premises), then:

IH1: If E :: Γ→ A then E ′ :: Γ ` A.
IH2: If F :: Γ→ B then F ′ :: Γ ` B.
Using the inductive hypotheses, we can define the following transforma-

tions from a →-derivation to a `-derivation:
Case ∧R:

E
Γ→ A

F
Γ→ B

Γ→ A ∧B
∧R

E ′
Γ ` A

F ′

Γ ` B
Γ ` A ∧B

∧I

Case ∧L:
E

Γ, A,B → C

Γ, A ∧B → C
∧L

E ′ + weak. lemma
Γ, A ∧B,A,B ` C

Γ, A ∧B,A ` A ∧B
hyp

Γ, A ∧B,A ` B
∧E2

Γ, A ∧B,A ` C
subst

Γ, A ∧B ` A ∧B
hyp

Γ, A ∧B ` A
∧E1

Γ, A ∧B ` C
subst

Case ∨R1: (the case for ∨R2 is analogous)

E
Γ→ A

Γ→ A ∨B
∨R1

E ′
Γ ` A

Γ ` A ∨B
∨I1

Tutorial Notes August 23, 2019

Intuitionistic Logic 23

Case ∨L:
E

Γ, A→ C
F

Γ, B → C

Γ, A ∨B → C
∨L

Γ, A ∨B ` A ∨B
hyp E ′ + weak. lemma

Γ, A ∨B,A ` C
F ′ + weak. lemma

Γ, A ∨B,B ` C

Γ, A ∨B ` C
∨E

Case ⊃ R:
D

Γ, A→ B

Γ→ A ⊃ B
⊃ R

D′

Γ, A ` B

Γ ` A ⊃ B
⊃ I

Case ⊃ L:
D

Γ, A ⊃ B → A
E

Γ, B → C

Γ, A ⊃ B → C
⊃ L

E ′ + weak. lemma
Γ, A ⊃ B,B ` C

Γ, A ⊃ B ` A ⊃ B
hyp D′

Γ, A ⊃ B ` A

Γ, A ⊃ B ` B
⊃ E

Γ, A ⊃ B ` C
subst

Theorem 3. (Completeness) If D :: Γ ` A then D′ :: Γ→ A.

Proof. The proof proceeds by structural induction on D.
Base cases:

Γ ` >
>I

 Γ→ >
>R

Γ, A ` A
hyp

 Γ, A→ A
init

Inductive cases: There are nine cases, one for each (non-axiomatic)
rule that might be used to construct D. We show only a few of them. In
each case, we assume the following inductive hypotheses:

IH1: If E :: Γ ` A then E ′ :: Γ→ A.
IH2: If F :: Γ ` B then F ′ :: Γ→ B.

Tutorial Notes August 23, 2019

Intuitionistic Logic 24

Case ∧I:
E

Γ ` A
F

Γ ` B
Γ ` A ∧B

∧I

E ′
Γ→ A

F ′

Γ→ B

Γ→ A ∧B
∧R

Case ∧E1:

E
Γ ` A ∧B

Γ ` A
∧E1

E ′
Γ→ A ∧B

Γ, A,B → A
id

Γ, A ∧B → A
∧L

Γ→ A
cut

Case ∨I1: (the case of ∨I2 is analogous)

D
Γ ` A

Γ ` A ∨B
∨I1

D′

Γ→ A

Γ→ A ∨B
∨R1

Case ∨E:

D
Γ ` A ∨B

E
Γ, A ` C

F
Γ, B ` C

Γ ` C
∨E

D′

Γ→ A ∨B

E ′
Γ, A→ C

F ′

Γ, B → C

Γ, A ∨B → C
∨L

Γ→ C
cut

Case ⊃ I:
E

Γ, A ` B

Γ ` A ⊃ B
⊃ I

E ′
Γ, A→ B

Γ→ A ⊃ B
⊃ R

Case ⊃ E:
E

Γ ` A ⊃ B
F

Γ ` A
Γ ` B

⊃ E

E ′
Γ→ A ⊃ B

F ′

Γ→ A

Γ, A ⊃ B → A
weak

Γ, A ⊃ B,B → B
id

Γ, A ⊃ B → B
⊃ L

Γ→ B
cut

Tutorial Notes August 23, 2019

Intuitionistic Logic 25

Case ⊥E:
E

Γ ` ⊥
Γ ` C

⊥E

E ′
Γ→ ⊥ Γ,⊥ → C

⊥L

Γ→ C
cut

4.4 Concluding Remarks

Now that we have shown that sequent calculus + cut + id + weakening is
sound and complete with respect to natural deduction, we need to prove
that the rules cut, id and weakening are admissible. This means that any
proof with these rules can be transformed into a proof without them. These
proofs of admissibility are done via structural induction on the derivation
and/or formulas. Unfortunately, we do not have enough time to go over
them in this tutorial.

It is important to understand the consequences of these properties, though.

Consequences of id expansion

Suppose we are implementing a calculus that has id as a rule, instead of init.
This means that, at any point in the proof, we can check if the sequent can
be closed. This is computationally expensive. Not only we need to try all
formulas, we have to compare them for equality, which is done on linear time
on the size of the formula. If there are many, and big, formulas, this can slow
down the prover considerably. Therefore, depending on the implementation,
it may be more efficient to check for axioms only on atoms (which, for first-
order logic, can be hard enough already).

The fact that we can get rid of id and only use init is precisely what is
called id-expansion.

Consequences of weakening admissibility

Weakening is one of the so-called structural rules, because it only changes the
structure of the sequent, without touching the formulas themselves. Another
popular structural rule is contraction:

Γ, A,A→ C

Γ, A→ C
cont

The downside of having structural rules in a calculus that is going to
be used for automated theorem proving is that these rules can always be
applied. This increases the search space considerably, so proving that the
system is equally expressive without these rules is of great help.

Both contraction and weakening are admissible for the sequent calculus
we have shown previously.

Tutorial Notes August 23, 2019

Intuitionistic Logic 26

Consequences of cut-elimination

Sub-formula property :) Without cut, we get the nice property that all
sequents occurring in a proof contain only sub-formulas of the end-sequent.

Proof-search :) If we have cut in our calculus, then proof search becomes
sort of impossible, as we could “guess” a cut formula at every step, and there
are infinitely many possibilities. Therefore, a cut-free calculus is much better
suitable for automated proof search.

Consistency proof :) In a cut-free calculus it is straightforward that
we cannot derive → ⊥, so we get the calculus’ consistency for free as a
corollary.

Increase in proof length :(There is no free lunch. Turns out that
eliminating the cuts from a proof may increase its size exponentially (in
propositional logic) or even non-elementary (in first-order logic).

Tutorial Notes August 23, 2019

